103 research outputs found

    Verification of criterion-related validity of the evaluation method of postural stability using the frame subtraction method.

    Get PDF
    It is important to quantify the postural stability. The frame subtraction method can calculate the motions of a subject, and might be easier to implement, with lower costs. However, validity of the evaluation of postural stability using this method have not been validated yet. Therefore, the purpose of this study was to verify criterion-related validity of the frame subtraction scores and the center of pressure (COP) parameters during maintenance of single leg standing. Twenty two healthy young subjects participated in this study. Motion tasks comprised right leg standing with eyes open and closed. The total length of COP displacements (LNG), Root mean square (RMS) area, anterior - posterior (AP) range, medial - lateral (ML) range were recorded using the force plate. Simultaneously, the motion images were acquired with digital video cameras from the front and right sides. After the motion images were analyzed using the frame subtraction method, the frame subtraction scores (maximumsum of the frame subtraction score on each planethe frontal and sagittal planes) were measured. To confirm the validity, Spearman's rank correlation coefficient between the frame subtraction scores and the COP parameters was calculated. The sum of the frame subtraction score on the frontal plane was significantly correlated with all COP displacements in the single leg standing. The result of this study indicated that the frame subtraction method could be applied to the evaluation of balance task with postural sway such as maintenance of single leg standing. The frame subtraction method is low cost and easy owing to its marker-less systems

    Validity of the frame subtraction method in dynamic postural stability

    Get PDF
    Background The movement of targeted subjects can be calculated using the frame subtraction method. However, the validity of this evaluation method of dynamic postural stability has not been clarified yet. This study aimed to verify the validity of the evaluation method for jump landing using the frame subtraction score based on the ground reaction force (GRF). Methods Twenty subjects performed single-leg jump landing, and their dynamic postural stability index (DPSI), medial-lateral stability index (MLSI), anterior-posterior stability index, and vertical stability index (VSI) were calculated from the GRF. Simultaneously, motion images were captured using digital video cameras in the sagittal and frontal planes. After the motion images were analyzed using the frame subtraction method, the frame subtraction scores in the frontal, sagittal, and combined planes were calculated. To confirm its validity, the relationship between the frame subtraction scores and GRF parameters was investigated using Pearson's correlation analysis. Results The frame subtraction scores in the frontal and combined planes were significantly correlated with the DPSI, MLSI, and VSI (r = 0.46-0.75, P < 0.05). Conclusions Therefore, the frame subtraction method could be applied to the evaluation of dynamic postural stability. Markerless systems are deemed useful in clinical practice

    The Quiescent Intracluster Medium in the Core of the Perseus Cluster

    Get PDF
    Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July

    Beam and SKS spectrometers at the K1.8 beam line

    Get PDF
    High-resolution spectrometers for both incident beams and scattered particles have been constructed at the K1.8 beam line of the Hadron Experimental Facility at J-PARC. A point-to-point optics is realized between the entrance and exit of QQDQQ magnets for the beam spectrometer. Fine-pitch wire chamber trackers and hodoscope counters are installed in the beam spectrometer to accept a high rate beam up to 107 Hz. The superconducting kaon spectrometer for scattered particles was transferred from KEK with modifications to the cryogenic system and detectors. A missing-mass resolution of 1.9 ± 0.1 MeV/c2 (FWHM) was achieved for the ∑ peaks of (π±, K+) reactions on a proton target in the first physics run of E19 in 2010

    Hitomi (ASTRO-H) X-ray Astronomy Satellite

    Get PDF
    The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E  >  2  keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month
    corecore